Enzyme surface rigidity tunes the temperature dependence of catalytic rates.
نویسندگان
چکیده
The structural origin of enzyme adaptation to low temperature, allowing efficient catalysis of chemical reactions even near the freezing point of water, remains a fundamental puzzle in biocatalysis. A remarkable universal fingerprint shared by all cold-active enzymes is a reduction of the activation enthalpy accompanied by a more negative entropy, which alleviates the exponential decrease in chemical reaction rates caused by lowering of the temperature. Herein, we explore the role of protein surface mobility in determining this enthalpy-entropy balance. The effects of modifying surface rigidity in cold- and warm-active trypsins are demonstrated here by calculation of high-precision Arrhenius plots and thermodynamic activation parameters for the peptide hydrolysis reaction, using extensive computer simulations. The protein surface flexibility is systematically varied by applying positional restraints, causing the remarkable effect of turning the cold-active trypsin into a variant with mesophilic characteristics without changing the amino acid sequence. Furthermore, we show that just restraining a key surface loop causes the same effect as a point mutation in that loop between the cold- and warm-active trypsin. Importantly, changes in the activation enthalpy-entropy balance of up to 10 kcal/mol are almost perfectly balanced at room temperature, whereas they yield significantly higher rates at low temperatures for the cold-adapted enzyme.
منابع مشابه
Increasing importance of protein flexibility in designing biocatalytic processes☆
Enzymes require some flexibility for catalysis. Biotechnologists prefer stable enzymes but often this stabilization comes at the cost of reduced efficiency. Enzymes from thermophiles have low flexibility but poor catalytic rates. Enzymes from psychrophiles are less stable but show good catalytic rates at low temperature. In organic solvents enzymes perform poorly as the prior drying makes the e...
متن کاملThe immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme
The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...
متن کاملThe role of carburization temperature on the molybdenum carbide surface and their catalytic activity
The surfaces of molybdenum carbide were varied by changing the carburization temperature between 823 and 1123 K. The surfaces of the catalytic material were investigated using in-situ temperature program carburization followed by temperature program reduction and oxidation. In-situ temperature program oxidation (TPO) showed the surfaces of the catalysts contain a similar amoun...
متن کاملThe immobilization of laccase enzyme from Trametes versicolor on the surface of porous zinc oxide nanoparticles and studying features of the immobilized enzyme
The laccase enzyme is the largest group of Oxidoreductase enzymes and is capable of oxidizing a wide range of organic substrates to water along with molecular oxygen resuscitation. ZnO nanoparticles are known for their specific properties such as chemical stability, high electrochemical coupling rates, and wide range of absorption of radiation as multifunctional compounds. In this study, ZnO po...
متن کاملEffects of a distal mutation on active site chemistry.
Previous studies of Escherichia coli dihydrofolate reductase (ecDHFR) have demonstrated that residue G121, which is 19 A from the catalytic center, is involved in catalysis, and long distance dynamical motions were implied. Specifically, the ecDHFR mutant G121V has been extensively studied by various experimental and theoretical tools, and the mutation's effect on kinetic, structural, and dynam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 113 28 شماره
صفحات -
تاریخ انتشار 2016